Magnetic multilayers on nanospheres.

نویسندگان

  • Manfred Albrecht
  • Guohan Hu
  • Ildico L Guhr
  • Till C Ulbrich
  • Johannes Boneberg
  • Paul Leiderer
  • Günter Schatz
چکیده

Thin-film technology is widely implemented in numerous applications. Although flat substrates are commonly used, we report on the advantages of using curved surfaces as a substrate. The curvature induces a lateral film-thickness variation that allows alteration of the properties of the deposited material. Based on this concept, a variety of implementations in materials science can be expected. As an example, a topographic pattern formed of spherical nanoparticles is combined with magnetic multilayer film deposition. Here we show that this combination leads to a new class of magnetic material with a unique combination of remarkable properties: The so-formed nanostructures are monodisperse, magnetically isolated, single-domain, and reveal a uniform magnetic anisotropy with an unexpected switching behaviour induced by their spherical shape. Furthermore, changing the deposition angle with respect to the particle ensemble allows tailoring of the orientation of the magnetic anisotropy, which results in tilted nanostructure material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4).6H2O, Co(SO4).7H2O, Cu(SO4) and H3BO3) using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD) patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX)  analysis confirmed the purity of deposited samples. ...

متن کامل

Polyelectrolyte Multilayers on Magnetic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry

A novel, magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and was used for Magnetic Solid Phase Extraction (MSPE) of trace A+ via Flame Atomic Absorption Spectrometry (FAAS). The experimental parameters for the MSPE procedure, such as the pH, type, and concentration of eluent, ultrasonic time and effects of co-existing ions wer...

متن کامل

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID). The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM) experiments, which implies that the cobalt nanospheres must be as small as possible while bearing...

متن کامل

Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres.

BACKGROUND Fluorescent-magnetic-biotargeting multifunctional nanospheres are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. We have been developing such multifunctional nanospheres for biomedical applications. METHODS We covalently coupled avidin onto the surfaces of fluorescent-magnetic bifunctional nanospheres to construct fluorescent-magnetic-bio...

متن کامل

Effect of Composition and Thickness on the Perpendicular Magnetic Anisotropy of (Co/Pd) Multilayers

Magnetic materials with perpendicular magnetic anisotropy (PMA) have wide-ranging applications in magnetic recording and sensing devices. Multilayers comprised of ferromagnetic and non-magnetic metals (FM-NM) are interesting materials, as their magnetic anisotropy depends strongly on composition and growth parameters. In this context, (Co/Pd) multilayers have gained huge interest recently due t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2005